
A Beowulf-class architecture proposal for real-time embedded vision.

P.A. Revenga †, J. Sérot ‡, J. L. Lázaro †, J.P. Derutin ‡
† Dpto de Electrónica ‡ LASMEA, UMR 6602 CNRS

Universidad de Alcalá de Henares Université Blaise Pascal.
Madrid, 28806, Spain Campus des Cézeaux, Aubière, France

revenga,lazaro@depeca.uah.es, jserot,derutin@lasmea.univ-bpclermont.fr

Abstract

In this paper a new type of parallel computer architec-
ture dedicated to real-time vision is proposed. The pro-
posed architecture is based upon the Beowulf concept –
i.e. COTS computing nodes interconnected by a high-speed
network and running standard, free software tools – but
also takes into account the constraints of embedded vision
systems, such as “on the fly” processing of video streams,
small volume, and low power consumption. Its main orig-
inality lies in the presence of two separate communication
media: a dedicated bus for fast video i/o and a standard,
switched inter-connection network for inter-process com-
munication. Another distinctive point is the use of a high-
level parallel programming model, based upon algorithmic
skeletons. In order to assess the validity of the proposal,
a first prototype has been built and is described in the pa-
per. It uses G4 motherboards coming from Apple Cube
mass market computers, a Fast Ethernet communication
network and a FireWire (IEEE-1394) video bus. Results of
preliminary benchmarks are presented.

1 Introduction

Compared to classical HPC (High Performance Com-
puting) applications, embedded vision applications, raise
two specific issues: first, they implement reactive sys-
tems, operating “on the fly” on digital streams of images.
This means that they must be able to absorb input data
and output results at a minimum frequency and produce
responses within a maximal latency. Second, they must
meet stringent operational constraints in terms of volume
and power consumption. These applications may be found
for instance in autonomous navigation vehicles, like space
rovers, satellites, robots and cars equipped with assisted-
driving systems. In most of the cases, the need to provide
high performance while meeting the afore-mentioned con-

straints effectively rules out implementations based upon
stock-hardware.

In the context of High-Performance Computing, Be-
owulf -class parallel machines [3, 18] are enjoying an ever-
increasing success. A Beowulf is a multi-computer, scal-
able architecture consisting of mass market common off-
the-shelf components running a freely available operating
system and software packages, and inter-connected via a
high-bandwidth network like Fast Ethernet, Giganet, SCI,
Myrinet or ATM. Typical Beowulfs are made of industry-
standard PC CPU and interface cards and run commod-
ity software like Linux OS and the PVM or MPI message
passing libraries. Compared to other parallel architectures
(vector computers, MPPs, SMPs), the main advantages of
Beowulfs are their incomparable performance/cost ratio,
their scalability – a Beowulf can be viewed as a cluster of
pluggable CPU+memory compute nodes – and their ability
to take advantage of advances in processor and network-
ing technology. But most of Beowulf machines built today
are dedicated to number-crunching, off-line computations
(simulation, data-mining, . . .). For these applications, the
so-called “pile-of-PC” approach to clustering is effective:
machines are built by “stacking” standard PC enclosures,
interconnecting them via a dedicated switch and making
i/o from/to disk on one or several dedicated server nodes.
For embedded real-time vision systems (such as those em-
barked in autonomous vehicles) this approach is clearly not
possible, due to the above-mentioned constraints (volume,
power consumption).

The work described in this paper therefore aims at ex-
ploring the conceptual and technological issues associated
to the design of a Beowulf architecture dedicated to the
real-time (on-the-fly) processing of digital video streams
for embedded vision systems. The paper will be organized
as follows. Section 2 will recall the requirements for such
systems. It will then be showed that none of the existing
approaches can fulfill all these requirements and an exten-
sion of the Beowulf concept will be proposed as a possible

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:44 from IEEE Xplore. Restrictions apply.

answer. The resulting architecture will be defined in Sec-
tion 3 and a prototype instantiation of this architecture pre-
sented in Section 4 with results of preliminary benchmarks.
Section 5 will include a short survey of related work and
Section 6 will concludes this paper.

2 Architectures for real-time embedded vi-
sion

Systems for embedded real-time vision must meet sev-
eral constraints:

High performance. This comes from the necessity to
process “on the fly” digital streams of images. This means
that these systems must be able to absorb input data and
output results at a minimum frequency and produce re-
sponses within a maximal latency. For assisted-driving
applications, for instance, the typical frequencies and la-
tencies are in the range of 10-100 frame/s and 4-40 ms re-
spectively. For reasonably complex applications (involving
10-100 elementary operations per pixel) and medium-sized
images (512× 512), this requires a computing power in the
range of 0.1 to 5 Gflops.

Scalability. This refers to the ability to increase the
system performances without changing its architecture, by
simply adding computing nodes, to match the application
requirements.

Resistance to obsolescence. Dedicated architectures
can be made obsolete very quickly by the rapid evolu-
tion of micro-processor technology. It is therefore cru-
cial for these architectures to provide an upgrade path, by
which technology advances can be included without ma-
jor changes in the system architecture (by simply replacing
processors for instance).

Volume and power consumption. This very pragmati-
cal concern is critical for systems that must be embarked on
vehicles or on satellites. For instance, Pentium processors
are known to have a high power consumption and there-
fore require large power supplies and big heat dissipation
systems. The critical point here is the ratio of computing
power to power consumption (Flops/Watt) or of computing
power to volume (Flops/dm3).

Easy to use and efficient mechanism for video data
acquisition. This refers to the possibility to use mass mar-
ket, cheap video sub-systems (cameras, displays, record-
ing devices, etc.) on the one hand, and to the ability to
automatically and efficiently broadcast video data coming
from an input device to all computing nodes on the other
hand. The second point was proved to be of crucial im-
portance in multi-processor architectures: in this case, the
cost of explicitly broadcasting an image from one proces-
sor (the one controlling the frame grabber for instance) to
all the others can easily destroy any potential gain obtained

by parallelizing processing on this image.
Cost. This issue is more likely to be solved by resorting

to M2COTS1 components both for the i/o sub-systems and
the computing devices (processors, networking, etc.).

Programmability. This refers to the availability
of user-friendly programming models environments and
tools, including C (as opposed to assembler) compilers, de-
bugging and profiling tools, application-specific libraries,
etc. For multi-processors, a high-level parallel program-
ming model is required, since low-level parallel program-
ming models – relying on explicit message-passing like in
MPI [11] or on shared-memory thread coordination like
in OpenMP [13] – are known to place too much burden on
the application programmer and to be too error-prone. This
point is of critical importance if the machine is intended to
be used by people who will not be parallel programmers in
the first place.

None of the various attempts that have been made to
build embedded systems for real-time vision have met all
of these criteria.

Solutions based upon stock-hardware, high-end PCs
may provide, in certain circumstances, the required com-
puting power but raise significant problems as regards vol-
ume and power consumption. These problems can be
solved by resorting to laptop PCs but at the expense of a
significant increase in the cost/performance ratio. Scala-
bility remains, anyway, problematic.

Architectures built from specialized processors
(DSP, FPGA, ASIC) generally offers the best perfor-
mance/volume or performance/watt ratio but are difficult
to program (often requiring skills in assembler or VHDL
programming). Interfacing to COTS components for video
i/o may also be far from trivial.

Dedicated multi-processor machines, such as the
TRANSVISION platform [9] or the SYMPHONIE machine
[6] generally offer good scalability and better programma-
bility but have proved to suffer from quick obsolescence.

On the other hand, the Beowulf approach to high-
performance computing seems to match almost all of the
above-mentioned criteria. The MIMD general architecture
offers good scalability. The use of standard COTS compo-
nents, both for CPU nodes and network devices provides
an easy and cost-effective way for upgrading and hence
resistance to obsolescence. The use of standard software
components for OS (Linux) and programming tools makes
them easy to operate and maintain. Moreover, high-level
parallel programming tools can easily be ported to these ar-
chitectures, thanks to OS-level standardization. However,
two issues must be addressed for a Beowulf-like architec-
ture to be used for embedded real-time vision. The first

1Mass Market Commodity Off The Self

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:44 from IEEE Xplore. Restrictions apply.

one is the definition of an efficient hardware and software
mechanism for broadcasting video data. The second con-
cerns volume and power consumption. It is clear, indeed,
that the so-called “pile-of-PC” approach used for existing
Beowulf clusters – in which machines are built by simply
“stacking” standard PC enclosures, interconnecting them
via a dedicated switch and making i/o from/to disk on one
or several dedicated server nodes – does not meet the vol-
ume and power consumption constraints of embedded vi-
sion systems. Answering these questions led us to propose
a variation on the Beowulf concept dedicated to real-time
embedded vision. This proposal is described in the next
section.

3 Architecture proposal

The specific issues raised in the previous section (effi-
cient broadcasting of images and low volume and power
consumption) can be addressed by first relying on a dedi-
cated bus for broadcasting images from video source(s) to
computing nodes (and for sending video results to display-
ing devices) and, second, by choosing the computing nodes
offering the best Gflops/watt and Gflops/dm3 ratios in the
available technology. The first point actually amounts
to building a dual-network architecture, as illustrated in
Fig. 1: one network (bus) dedicated to the communication
of video data (preferably in a timely, synchronous man-
ner), and another for process inter-communication. The
latter can be any of the solutions used for “standard” Be-
owulfs (Fast Ethernet, Gigabit Ethernet, Myrinet, etc.). For
the former, the best solution, in the current state of the art,
seems to be the IEEE-1394 (Firewire) bus. IEEE1394 is
an international, non-proprietary and inexpensive standard
hardware-software digital interface for data transporting up
to 400Mbps. It has a flexible topology, is hot pluggable and
configurable. Digital video devices can send digital video
data, can be controlled and powered by the bus. There
are two types of IEEE 1394 data transfer: asynchronous
and isochronous. Asynchronous transport is the traditional
computer memory-mapped, load and store interface. In ad-
dition IEEE 1394 features a unique isochronous data chan-
nel interface – providing guaranteed data transport at a pre-
determined rate – and the possibility of controlling CMOS
cameras with sub-sampling and windowing capabilities.

More latitude is given for the choice of the comput-
ing nodes. We have been experimenting with Power-PC
G4 mother-boards coming from Apple Cube machines [7].
Several features of the G4 processor – and of its Cube in-
carnation – make it highly attractive in our context: First,
it can deliver impressive performance, even at moderate
clock frequencies, thanks to its built-in Altivec vector pro-
cessing unit [1, 14]. The Altivec extension is specially use-

N nodes

DIGITAL CAMERAS

DIG
IT

AL V
ID

EO SUBSYSTEM

SW
IT

CH R
ED

EMBEDDED CPU NODE WITH PERIFERAL

Figure 1. Ossian architecture proposal

IEEE1394
connectors

USB connectors

Power 24Vdc

MEMORY SLOTS dimm

PCI connector

Ethernet connector
100Mbit

Figure 2. The G4-Cube motherboard

ful for low-level iconic processing, such as found in the
first stages of most of vision applications (in [8], speedups
in the range of 10-15 are reported for 1D and 2D signal pro-
cessing applications). Moreover, and contrary the Pentium
MMX/SSE similar extensions, using the Altivec does not
require assembly-level programming, thanks to the avail-
ability of an Altivec-aware version of the gcc compiler
[2]. Second, the G4 processor has a very good Gflops/Watt
ratio, with a peak power of 1 Gflops (with Altivec) and a
power consumption of less than 4 Watts. Third, the Cube
motherboard is very small (16x19 cm) (see Fig. 2). After
removal of unnecessary devices (hard-disk, CD-drives, dis-
play controller, etc.), it should be possible to pack four G4
motherboards in the original Cube enclosure (20x20x20
cm, see Fig. 3).

The software architecture of the proposed platform is a
three-layered one:

• The operating system is Linux, following the Beowulf
tradition. This is for cost and portability. The Linux
distribution must of course support the target proces-
sor and chip-set (G4 in our case) and provide drivers

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:44 from IEEE Xplore. Restrictions apply.

Figure 3. The Cube enclosure

for the two communication media (Firewire on one
hand, Fast or Gigabit Ethernet, Myrinet, etc. on the
other hand).

• The low-level parallel programming model is pro-
vided by a portable communication library, such as
MPI [11]. Even if application programmers are not in-
tended to write applications at this level (see below),
this increases the portability of the overall software
architecture.

• The high-level parallel programming model is based
upon algorithmic skeletons. Skeletons [4, 5] are
higher-order program constructs encapsulating com-
mon and recurrent forms of parallelism to make them
readily available to application programmers. Exper-
iments with the SKIPPER parallel programming envi-
ronment – developed at LASMEA between 1996 and
2002 [17, 16] – have shown that skeleton-based par-
allel programming methodologies offer an effective
way for conciliating fast prototyping and efficiency,
by providing user guidance and a mostly automatic
procedure for designing and implementing parallel
applications, in particular in a specific application do-
main, such as image processing. The overall software
architecture of our parallel programming environment
appears in Fig 4. The application programmer pro-
vides a skeletal, structured description of the paral-
lel program, the set of application-specific sequential
functions used to instantiate the skeletons and a de-
scription of the target architecture. The SKIPPER suite
of tools turns these descriptions into executable paral-
lel code. The main software components are: a library
of skeletons, a compile-time system (CTS) for gener-
ating the parallel C code and a run-time system (RTS)
providing support for executing this parallel code on
the target platform. The CTS can be further decom-
posed into a front-end, whose goal is to generate a
target-independent intermediate representation of the
parallel program, and a back-end system, in charge

FRONT−END

Skeleton
library description

C Compiler

Parallel code
Run−time support

Executable arallel code (SPMD/MPMD)

Parallel program

Target architecture
description

P0 P1

P2 P3

Application−specific
sequential functions

Intermediate
representation

(MAPPING)

void f1(...);
...

.c

BACK−END

 SKL3(f2))
 SKL2(f1),
 SKL1(
PGM=SKL1

SKL2

.c

CTS

P1.c
Pn.c

main() {

}
...

.h

void f2(...);

Figure 4. The SKIPPER parallel programming
environment

of mapping this intermediate representation onto the
target architecture. The SKIPPER library of skeletons
was built “bottom-up”, from a careful analysis of a
large corpus of existing low-to-mid level vision appli-
cations hand-coded in parallel C. It includes skeletons
for handling fixed data-parallelism (geometric parti-
tioning of images), variable data-parallelism (farm-
ing) and general task-level parallelism. More details
on the SKIPPER project can be found in [17] and [16].

4 Proof of concept

In order to show the validity of the architecture pro-
posal, a prototype machine has been built. This ma-
chine – called OSSIAN 2 – is built from four Apple G4
Cubes (Power-PC 7400 processor, 64 MB, 450 MHz), a
Fast Ethernet (100 Mb/s) switched inter-connection net-
work for inter-process communication, a FireWire (IEEE-
1394a) bus3 for video broadcasting, and several digital
cameras and DV-recorders for providing/recording video
streams. Broadcasting of images on the Firewire is done in
isochronous transmission mode, thus offering the possibil-
ity to run strict (hard) real-time applications. The software

2Ossian, like Beowulf, is the name of a famous knight is the Irish
Celtic tradition.

3As shown in Fig. 1 the bus is physically made by wiring nodes one
to another in a daisy-chain manner.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:44 from IEEE Xplore. Restrictions apply.

part consists of a Yellow Dog 2.0 distribution with kernel
version 2.4.12 and a patched Linux1394 driver subsystem
[10], the MPICH-1.2.2.3 [12] communication library and
the SKIPPER-D [15] skeleton-based suite of tools for high
level parallel programming. This version uses an inter-
mediate representation of parallel programs as data-flow
graphs (DFGs). These DFGs are automatically obtained
from a high-level skeletal description which uses sequen-
tial functions written in C as arguments to skeletons taken
from the SKIPPER library. For instance, the program using
the scm (Split, Compute and Merge) skeleton for comput-
ing in parallel a Sobel filter on an image using a decom-
position of this image into blocks of rows can be written
as:

let out_img = SCM split sobel merge in_img

where split, sobel and merge are the application-
specific sequential functions, with prototypes as follows:

void split(/*in*/ img *im, /*out*/ imgList *ims);
void sobel(/*in*/ img *im, /*out*/ img *im);
void merge(/*in*/ imgList *ims, /*out*/ img *im);

The run-time system (RTS) of SKIPPER-D is based upon
a multi-threaded data-flow interpreter, running SPMD on
all nodes of the OSSIAN machine.

4.1 Experimental results

The performances of the OSSIAN prototype have been
assessed by running several benchmark applications, both
in “batch” mode (with input images and results read from
and written to disk) and “on the fly” (with digital video
streams coming from a Firewire camera and results dis-
played on screen).

Table 1 summarizes results obtained with a very simple
application, consisting in in applying a convolution mask
(gaussian filter) on an image (read on disk). Two image
sizes were tested (256 × 256, and 512 × 512) and several
mask sizes were used, to vary the algorithmic complexity
(i.e. the number of basic operations per pixel). In tests
1-6, the mask is applied once to each pixel. In tests 7-
9, it is applied ten times, in order to (artificially) increase
the algorithm complexity. The reported numbers do not
include the time spent in disk i/o (reading and writing the
input and result images). In each case, four timings are
reported:

• the first one (tseq) is the sequential reference time,
measured on a single node (G4,450 MHz),

• the second one (tpar) is the parallel execution time,
obtained on a four node architecture using a sim-
ple fixed data partitionning skeleton(SCM: each node

Test Image Mask tseq tpar tvec tvp

1 256x256 1x5 17ms 8ms 1.3ms 2ms
2 3x3 27ms 11ms 2.5ms 2ms
3 5x5 62ms 17ms 6ms 2ms
4 512x512 1x3 50ms 18ms 4ms 4ms
5 3x3 108ms 27ms 10ms 5.5ms
6 5x5 250ms 68ms 23ms 11ms
7 512x512 1x3 500ms 131ms 40ms 16ms
8 3x3 1080ms 276ms 100ms 31ms
9 5x5 2500ms 632ms 230ms 64ms

Table 1. Absolute timings for several convo-
lution algorithms.

computes the convolution on one quarter of the input
image and the results are merged on one node for dis-
playing),

• the third one (tvec) is the execution time obtained on
a single node with a vectorized version of the con-
volution algorithm, making use of the Altivec SIMD
processing capabilities of the G4 processor,

• the last one (tpv) is the execution time obtained when
parallelizing, using the SCM skeleton, the vectorized
code. This version therefore exhibits two levels of
parallelism: SIMD at each processor level and MIMD
(SPMD) between processors.

These values show that, for simple, regular algorithms
(like convolution) and moderately sized image (up to
512x512) the performance requirements announced in Sec-
tion 2 can be met either by using SPMD-based parallelism
on the four nodes or by vectorizing the code on a single
node, but also that the same range of performances can be
reached for more complex algorithms – or larger images –
by using a combination of the two approaches. The most
impressive results are observed in tests 8 and 9 (iterated
convolution on a 512x512 image), where exploiting both
SIMD parallelism at the processor level and SPMD paral-
lelism between processors can reduce the total execution
by a factor of 35-40.

Figures 5 and 6 show the corresponding relative
speedups.

The P/S (tseq/tpar) and PV/V (tvec/tpv) figures show
the effect of SPMD parallelisation at the node level. With
a purely scalar (non-vectorized) code on each node, the as-
sociated speedups (P/S) range from two to four with the
higher values being associated with the more “complex”
algorithms (i.e. the ones involving the largest number of
operations per pixel). This is not surprizing, since increas-
ing this number has a favourable effect on the compute
vs. communication (CC) ratio of the application. When
the code is vectorized at each node using the G4 Altivec

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:44 from IEEE Xplore. Restrictions apply.

Figure 5. Relative speedups for convolution
algorithms (part 1)

Figure 6. Relative speedups for convolution
algorithms (part 2)

capabilities, the observed speedups (PV/V) are smaller -
starting even at 0.5 before reaching 3.5. This is clearly ex-
plained by the fact that vectorisation at the processor level,
by decreasing the computation time on each node, has an
unfavourable effect on the CC ratio.

The effect of vectorization can observed separately on
the V/S (tseq/tvec) figure. The corresponding speedup
range between 10 and 12, not so far the theoretical max-
imum of 164.

Finally, the PV/S (tseq/tpv) figure demonstrates the
combined effects of SIMD and SPMD parallelisation.
Here speedups range from 6 to 40, with a variation roughly
following the one observed in the P/S figure.

Performances of the OSSIAN prototype in a more re-
alistic context have been assessed by implementing a al-

4The application described here operates on 8 bits pixels. The G4
Altivec unit operates on 128 bits vectors. So the maximum parallelism
degree is 16.

gorithm performing image stabilisation and operating on
the fly on a Firewire digital video stream. This algorithm
involves two main stages: first, the detection of a set of
points of interests (POIs) in the input image and, second,
the tracking of these points within neighbooring windows
using a correlation filter. The amount of computation for
the first stage increases with the size of the input image
and the number of tracked points. For the second stage,
this amount depends on the size of the tracking window
and the of mask used for the correlation. Table 2 gives the
time to process one frame of the input stream for three val-
ues of the number of tracked points (np=21, 42 and 63) on
640x480 images5. The size of the tracking windows and of
the correlation mask are 41x41 and 8x8 respectively. Re-
sults are first given for the two most significant configura-
tions of the previous benchmark:

• sequential, non-vectorized code on a single node (G4,
450 MHz, 64M),

• parallel, vectorized code on four nodes with Altivec
support.

For comparison, we also give timings measured on two
other architectures6:

• a single 1.5GHz Pentium IV machine,

• a single 1Ghz G4 with Altivec support.

Although the speedups measured here are smaller than
in the convolution case - due to a much less regular, and
hence vectorizable, algorithm - the reported times show
that a four-nodes OSSIAN architecture makes it possible
to process more than 20 frames per second, even with 63
points, whereas a single Pentium machine can only cope
with 21 points in this context.

5 Related work

Surprisingly enough, very few projects have attempted
to apply the Beowulf concept to real-time vision.

In [19], Yoshimoto describes a Firewire-based PC clus-
ter dedicated to real-time image processing. It consists
of a cluster of PCs (Pentium III with Linux 2.2) intercon-
nected by a IEEE-1394a digital bus. This bus is used both
for transmitting video data from the camera to the pro-
cessors and for communicating between processors. Al-
though the possibility to obtain real-time performances is
demonstrated (on a stereo-based 3D image restoration), we

5Acquisition time can be neglected here since input image are copied
into processor memory by the DMA, in parallel with computations.

6The application was actually first developed for a Pentium IV ma-
chine and parallelized/vectorized for the OSSIAN platform afterwards.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:44 from IEEE Xplore. Restrictions apply.

Configuration np time(ms)
Single G4 21 78
Ossian SPMD+MIMD 41
Pentium IV 59
G4 1Ghz + Altivec 21
Single G4 42 104
Ossian SPMD+MIMD 40
Pentium IV 105
G4 1Ghz + Altivec 21.5
Single G4 63 140
Ossian SPMD+MIMD 51
Pentium IV 135
G4 1Ghz + Altivec 27

Table 2. Time to process one frame for the
stabilisation algorithm.

believe that sharing the same bus for video broadcasting
and inter-process communication can in fine compromise
scalability. Moreover, the proposed architecture could by
no way be termed as embedded since it does not take
into account constraints on volume and power consump-
tion. NASA also seems to have investigated the issues of
embedded clusters for real-time image processing in the
REE project. The Remote Exploration and Experimen-
tation (REE) project focuses on the development of low-
power, scalable, fault-tolerant, high-performance comput-
ing for use in space. The first test-bed hardware cluster was
an VME rack and nine PowerPC 604 node boards made by
Motorola. Each node has a dual CPU PowerG4 processor
(7400 at 400Mhz) with 128Mb EDAC memory and con-
nected by Myrinet. The operating system is Lynx. This
machine makes 40 Million Operations per second per watt
of power consumed, the communication between proces-
sors is at 132 MB/s using Myrinet. It allows automatic
reconfiguration around failed components and fault injec-
tion capability for every software accessible component.
There are similarities and differences between our work
and the NASA REE project. The similarities are in the field
of COTS embedded Beowulf for real time signal process-
ing (including imaging) but the principal differences are
related with the special hardware needed for spatial appli-
cations, the special video acquisition hardware, and the use
of very high speed and expensive Myrinet data network.
Our project relies upon M 2COTS components, commer-
cial network interfaces, and standard video acquisition de-
vices IEEE1394a.

6 Conclusion

From an hardware, architectural, point of view, the orig-
inality of the work described here lies in the adaptation of
the well-known Beowulf concept to the constraints of real-

time embedded vision. The main difference with “stan-
dard” Beowulfs is the presence of two, separate commu-
nication media: a dedicated, isochronous bus for broad-
casting video data and a standard inter-connection network
for parallelizing purposes. From a software point of view,
the originality comes from the deliberate use of high-level
programming model, based upon algorithmic skeletons, to
allow image processing – as opposed to parallel program-
ming – specialists to take advantage of high performance
computing in the field of real-time vision.

We plan to build several OSSIAN-like architectures in
order to demonstrate the generality of the concept and
its ability to take advantage of advances in the processor
and/or network technology. For instance, it seems possible,
while keeping all other hardware and software components
unchanged, to build machines using with SPARC mother-
boards or PowerPC 970 processors (recently announced).

References

[1] Altivec simd extension. http://www.altivec.org.
[2] Gnu gcc and binutils for altivec simd extensions.

http://www.altivec.org/tools/Original_GNU_Tools.
[3] D. Becker, T. Stearling, D. Savarese, J. Dorband,

U. Ranawake, and C. Packer. Beowulf: A parallel worksta-
tion for scientific computation. In Proceedings of the 1995
International Conference on Parallel Processing (ICPP),
pages 11–14, 1995.

[4] M. Cole. Algorithmic skeletons: structured management of
parallel computations. Pitman/MIT Press, 1989.

[5] M. Cole. Algorithmic skeletons. In G. J. Michaelson
and K. Hammond, editors, Research Directions in Paral-
lel Functional Programming. Springer Verlag, 1999.

[6] T. Collette, C. Gamrat, D. Juvin, J. Larue, L. Letellier,
M. Pethieux, R. Schmidt, and M. Viala. Symphonie, calcu-
lateur massivement parallèle : modélisation et réalisation.
Traitement du Signal, 14(6), 1997.

[7] The apple g4 cube computer.
http://www.info.apple.com/usen/g4cube.

[8] C. A. Hunter. An evaluation of PowerMac G4 systems
for fortran-based scientific computing with application to
computational fluid dynamics simulation. Technical report,
NASA Langley Research Center, Hampton,Virginia, July
2000.

[9] P. Legrand, R. Canals, and J. Dérutin. Edge and re-
gion segmentation processes on the parallel vision machine
Transvision. Computer Architecture for Machine Percep-
tion, pages 410–420, Dec 1993.

[10] The Linux-1394 project. http://linux1394.sourceforge.net.
[11] The Message Passing Interface (MPI) standard.

http://www-unix.mcs.anl.gov/mpi.
[12] The MPICH Message Passing Interface library implemen-

tation. http://www-unix.mcs.anl.gov/mpi/mpich/.
[13] Openmp specification for parallelism compiler directives.

http://www.openmp.org.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:44 from IEEE Xplore. Restrictions apply.

[14] M. Schmookler, M. Putrino, A. Mather J. Tyler,
H. Nguyen, C. Roth, M. Sharma, M. Pham, and J. Lent. A
low-power, high-speed implementation of a PowerPC(tm)
microprocessor vector extension. In Proceedings of the
14th IEEE Symposium on Computer Arithmetic. IEEE,
1998.

[15] J. Sérot. Tagged-token data-flow for skeletons. Parallel
Processing Letters, 11(4):377–392, Dec 2001.

[16] J. Sérot and D. Ginhac. Skeletons for parallel image pro-
cessing : an overview of the SKiPPER project. Parallel
Computing, 28(12):1785–1808, Dec 2002.

[17] J. Sérot, D. Ginhac, R. Chapuis, and J. Dérutin. Fast
prototyping of parallel vision applications using functional
skeletons. Journal of Machine Vision and Applications,
12(6):271–290, June 2001.

[18] T. Sterling, J. Salmon, D. Becker, and D. Savarese. How
to Build a Beowulf. Massachusetts Institute of Technology,
1999.

[19] H. Yoshimoto, D. Arita, and R. Taniguchi. Real-time im-
age processing on IEEE1394-based pc cluster. In 15th In-
ternational Parallel and distributed processing symposium.
IEEE, 2001.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 16:44 from IEEE Xplore. Restrictions apply.

